
Robotics Final Project Writeup
Kevin Scroggins

Team 2

“The Competition”
The main goal for the compilation was for all the robots to work together through
our ‘Master Planner’. This planner would manage the robots locations across all
three zones, displaying lots of debug information and synchronizing all relevant
information to other planners via our central ‘Master Server’. For the competition
we used the backup code which used hard-coded points and behaviours, because
the block deliver of our Master Planner was not functioning correctly at the time
of the competition. This problem was resolved shortly after, however. We will be
submitting a video of our actual code working instead of the demo video from the
competition with the backup code.

Chris’ goal was writing the back up code as a safety net, for if/when the Master
Planner failed. This code was built for one robot that would be run in the center
area. This robot would collect all the possible blocks using navigation and sweeping
all the blocks to the drop-off zone. It also moves the left most pot to its’ scoring
zone in the middle of the run, and pushes another pot out of the way, getting some
points. This code basically just used point-to-point navigation with some newly
added functionality (i.e. RAM THE POT!!!, NOS, and sweeping of multiple blocks).
It took quite long to fully get this back-up code working because we had to get the
perfect point values, and those values required repetitive tweaking before arriving
at the perfect value (for most consistent performance).

Kevin and Corey worked together as a team on the Master Planner and Master
Plan (SPIN Code), both creating and debugging / testing it thoroughly. It is a
very complex system with many useful features which are all outlined in the
implementation details section.

Environment:

“The Team”
Roles: Because of the nature of our team arrangement, even though we had
delegated primes, each of us helped out with each part of this project. Team
members:

Kevin Scroggins

● Student ID: 100679071
● E-Mail: nitro404@hotmail.com

Corey Faibish
● Student ID: 100764177
● E-Mail: cfaibish@connect.carleton.ca

Chris Sullivan
● Student ID: 100744875
● E-Mail: yoshi_sully@hotmail.com

Robot Names:
Corey: Walter Chan
Chris: Star Warrior
Kevin: Pac-Man

Who did what?

Corey Chris Kevin

GUIs for Master Planner Back Up Code (BuC) Master Planner

Master Server (BuC) Navigation Master Server

Master Plan (SPIN Code) (BuC) Pot Ramming Master Plan (SPIN Code)

FlowerPotPush (BuC) Block Sweeping Display GUI Window

FlowerPotSearch (BuC) Block Delivery RobotSystem

TaskManager (BuC) Mini Master Planner BlockSystem

Path Plotting (BuC) SPIN Code PotSystem

Navigation PathSystem

BlockPickup TaskManager

BlockDeliver Navigation

 BlockPickup

 BlockDeliver

 Networking

 Serialization System

 Webcam Interface

“My Approach”
For our approach, we outlined a series of synchronized tasks via “flow diagrams”
(essentially print-offs of the environment which we traced out objective paths on).
Our implementation consists of a total of 13 tasks, each task containing a set of
objectives (or in some cases, no objectives at all). We used squares to designate
choice objectives, lines to designate paths and points to designate positions along
our path(s). They are not overly detailed, as they were only used as a reference to
help us plan our tasks for completing the objectives of the project. Each task and
objective is numbered, however objectives do occasionally contain branching points
where choices after the branch point are indicated by a different prefix letter. The
following 13 pages are scans of our original “flow diagrams”:

“Implementation Details”
Our implementation for the project involved a very high level plan using point-
to-point navigation, robot synchronization and simple instructions being sent
to the robots (ie. MoveForward, TurnLeft, TurnRightSlowly, PickUpBlock, etc.).
Instructions are sent from objective objects which are ultimately managed through
the task management system. Tasks can be edited using our task editing window,
and are automatically synchronized with a task list file, for portability. Once a
robot finishes a set of objectives (a task), it waits for all other robots to finish
their current task before continuing. It is assumed that tasks will be set up in such
a way that they will prevent robots from colliding with each other (as we have
no collision detection). Using a high-level plan such as this allowed us to avoid
unforeseen issues like what would happen if two robots got too close to each other,
or if wall following did not run as expected, for example. Our implementation
ultimately contains 3 major systems: MasterServer (JAVA), MasterPlanner (JAVA)
and MasterPlan (SPIN).

MasterServer - A central signal forwarding server which allows for reliable
planner-to-planner communications. This means that planners can keep in
synchronization with each other by forwarding any state changes, position changes
or whatever other relevant signals there may be to all other planners through
the master server. The master server has a few features, such as its own console
for outputting signals being forwarded through it, as well as any other debug
information. During the simulation, it generally remains idle and requires no user
intervention (aside from assigning tracker numbers to clients when they first
connect). We have designed our own protocol system for the purposes of this
project which is shared and utilized by both the planner and server.

MasterPlannner - The main focus of our implementation. The planner contains a
very nice graphical user interface to allow for easy visual debugging and monitoring
of simulations, simple planning of objectives / tasks for each robot, and so on.
There are two main graphical user interface windows: a “display window” and
a “planner window”.

The “display window” shows all 3 tracker “zones” as background images along
with circles which represent robots, blocks, pots and drop off locations, as well as
segmented lines to represent the paths the robots will take when completing their
tasks / objectives. The display window also contains functionality for dynamically
loading and synchronizing updated tracker images between all 3 planners, but since
we ran into some issues transferring the image data over the network, this feature
is unavailable. The window is also highly interactive, and all pots, blocks and robots

can be re-positioned as needed. Paths can also be edited, created and deleted as
needed (there is support for multiple paths, for more flexibility).

The “planner window” is mostly for textual debugging and changing settings. The
main window shows information regarding robots, blocks and pots and generally
indicates their positions / poses, states and any other relevant information. It also
shows how many pots and blocks have been delivered and how many tasks each
robot / all robots have completed. There is even a timer at the top of the window to
keep track of how much time has elapsed since the simulation started. And lastly,
there is a small console window at the bottom to monitor signals being transferred
over the network. There is also a separate task editing window which can be
accessed from the edit menu, which allows the user to plan tasks for each robot,
and the objectives associated with each tasks. It is fairly intuitive and easy to use
(although a little cryptic when trying to edit already-created tasks).

The simulation does not start until after you start the robots and the GUI windows
load. Each planner must connect to the server, and once all planners are connected
one of the users must start the simulation, then the robots will begin fulfilling their
designated tasks / objectives. While the simulation is running, you will be able to
see robots moving around, the directions they are facing as well as lines pointing
towards their current destination (if any). If a robot picks up a block, you will be
able to see the block moving with the robot on the “display window” and if a block
is not found, it will be greyed out. This makes for really nice visual debugging /
monitoring of our system / simulation as it progresses.

Our planner consists of a number of modular systems that make our high-level
approach possible:

● RobotSystem (Robot, RobotState, RobotInstruction, RobotResponse,
RobotPosition):

 Manages all of the robots in the simulation, including their states and
poses. Contains sensitivity values for point-to-point navigation and
handles responses from the robot when it is looking for / dropping off
blocks. Keeps robots synchronized with all other planners as well as
synchronizing their initial positions with the settings file.

● BlockSystem (Block, BlockState, DropOffLocation, DropOffLocationState):
 Manages all of the blocks / drop off locations in the simulation,

including their states and positions as well as keeping them
synchronized with all other planners. Keeps initial block and drop off
locations synchronized with the settings file.

● PotSystem (Pot, PotState):
 Manages all of the pots, including their states and positions, as well as

keeping them synchronized with all other planners. Keeps initial pot

positions synchronized with the settings file.
● PathSystem (Vertex, Edge, Graph, Path):

 Manages all of the paths used in the simulation for designating paths
for the robots to follow. Keeps paths created by the user synchronized
with the path data file.

● TaskSystem (Objective, ObjectiveMoveToPosition,
ObjectiveBackUpToPosition, ObjectiveLookAtPosition, ObjectivePickUpBlock,
ObjectiveDropOffBlock, ObjectiveSkipTo, ObjectiveChoiceBlock,
ObjectiveLast, ObjectiveType, ObjectiveState, Task, TaskList, TaskState,
NextTaskType):

 The central controller of the simulation. When the simulation is active,
this system will be automatically updated each time a robot pose is
received for the robot associated with this planner. Each time the
system updates, an command will be sent from the current objective
of the current task to the robot, instructing the robot on what it should
do. If the robot has finished all of its objectives within the current
task it will remain idle, waiting for the other robots to finish before
continuing.

● Client (ClientThread, ServerDisconnectHandler, ServerInputSignalQueue,
ServerOutputSignalQueue):

 The code for handling networking and signal i/o with the master
server. Updates the system as appropriate with signals received from
other planners.

● Signal:
 The signals transmitted over the network during planner-to-planner

communications.
● Planner (MasterPlanner, SystemManager):

 Contains the central system which manages instances of all our
systems, as well as communication between the planner and our
systems. The actual planner class file is essentially a “dummy” planner
which invokes the system manager and forwards any data it receives
to the system manager.

● Imaging (Webcam):
 Contains our webcam abstraction which allows us to interface with the

computer’s webcam.
● Shared:

 Contains code which is shared between the client and the server.
This includes the system console, updatable interface and automatic
updater, positions and our serialization system (bytestream), etc.

● GUI (DisplayWindow, DisplayPanel, PlannerWindow, TaskEditorWindow,
EditMode):

 Contains all of the GUI code used in our implementation.

MasterPlan - The code which directly controls the robot. This portion of our
implementation is fairly simple and generally serves as a command interpreter for
signals sent from the planner (objectives), ie. MOVE_FORWARD = 0, PICK_UP =
12, etc. Robot movement during point to point navigation also has features for
turning / moving slowly, as well as arcing instead of turning to help speed up the
completion of objectives / tasks (ie. so the robot does not overshoot / overturn past
its destination, and instead of turning if it is no longer moving straight it arcs back
until it is - which is faster than turning). The largest portion of code on this part of
our implementation is the block pickup / drop off code which works independently
(ie. only requires a single command to search for and pick up a block / drop off a
block and back up a little).

The following are lists of the network signals and robot instructions used by our
system:

Network Signals
 0. Ping

1. Pong
2. StartSimulation
3. BlockStateChange
4. RobotStateChange
5. PotStateChange
6. TaskStarted
7. TaskCompleted
8. UpdateBlockPosition
9. UpdatePotPosition
10.UpdateActualRobotPosition
11.UpdateEstimatedRobotPosition
12.RequestTrackerImage
13.ReplyTrackerImage
14.BroadcastTrackerImage
15.ReceiveTrackerNumber

Robot Instructions
 0. Null

1. Stop
2. MoveForward
3. MoveForwardSlowly

4. BackUp
5. BackUpSlowly
6. TurnLeft
7. TurnRight
8. TurnLeftSlowly
9. TurnRightSlowly
10.ArcLeft
11.ArcRight
12.PickUp
13.DropOff
14.OpenGrippers
15.CloseGrippers
16.Finished

“Problems Encountered”
1. Robot Tracker send the wrong position information (when you were close

to certain walls) and the angle information was never right. This made
navigation hard because the robot would spend 3 times as long trying to find
the angle it should be at, but it always over shoots it due to the tracker. As
for the -1 position in the BuC the robot would spend about a minute in the
corner trying get its position again after it had a pot in gripper.

2. Robots stopping; “dying”.Even tho they are reserving data and its displaying
on the RBC the robot servos do not move.

3. gripper do not close all the way
4. Walls and floors not being painted a neutral colour (ie. black / white) results

in robot occasionally picking them up as a block
5. Computers / webcams / network / software highly unreliable in all respects
6. Network highly unreliable, no poses received for up to 10-15 seconds at

some points, robots relying on point to point navigation and would result in
them running into walls or continually spinning in circles / back and forth
since the tracking system does not work as expected

7. All network traffic has high potential to get corrupted and typically does (due
to high byte conversion issue), includes:

a. Desired paths from tracker
b. Poses from tracker
c. Robot to planner communication
d. Planner to robot communication
e. Tracker to tracker to communication

8. Computers are not grounded, resulting in constant shocking and frying of
computer USB ports and Robot’s chips (amongst other things) .

9. Webcams have a tendency to “shake/vibrate” while using

10.Dead zones using webcam tracker where it is impossible to see the robot,
resulting in the robot getting stuck when using point to point navigation

11.Webcams settings constantly reset and are sometimes not settable until after
the tracker is started

12.Webcams occasionally fail and need to be unplugged / plugged back in which
only sometimes works and can result in the computer blue-screening

13.A typical 3 hour lab results in at least 5-10 computer reboots, wasting most
of our lab time

14.Computers not properly set up - inconsistent settings and software on each
a. Webcam on 3rd station never works properly ever
b. Network not properly configured on 3rd station, resulted in any

networked assignments / projects being literally unable to run
c. Second station had far more software running as background

processes causing much more lag on the computer and resulting in
trackers running even more poorly

d. Mice never work on the first station, had to bring own mice to school
15.Network appears to become more congested at random points causing any

networked code to not work (at best)
16.RBC program is terrible

a. Crashes constantly (ie. Actual unhandled exceptions)
b. Unintuitive user interface (ie. Unable to start robot on some occasions,

annoying to use)
c. Planner loading is terrible (ie. Class naming conflicts due to

inconsistent software, tedious task to load planners, packages not
supported, etc.)

d. Planners / planner loading contain cryptic error messages (ie. no stack
traces to tell you what went wrong - just a simple message saying
some function could not be called)

e. Inconsistent versions between jar and version on computers and
version on website

f. Copying data out of the log windows in the RBC is very unintuitive at
best

g. Contains hard-coded paths, non-portable
17.RobotTracker program is even worse

a. Does not remember settings from last run (or at least doesn’t update
the GUI properly, causing many issues)

b. User interface is not friendly (ie. Issues when saving video files)
c. Webcam image would simply freeze on occasion for no reason, usually

during the middle of a simulation resulting in us having to painfully
restart time and time again, usually once it is at least 20 minutes in

d. Pre-plotted paths even have a tendency to get corrupted (likely due to
high-byte issue)

e. Estimated path still hard-coded in “fixed version”
f. Unable to plot desired paths in “fixed version”
g. Tracker version on website versus version on each individual computer

were each different and were missing different features / had different
things wrong with them (huge inconsistencies)

h. Path planning needs improvement - can only have one path, on one
zone, cannot move points or delete specific points, etc.

i. Code for syncing poses between trackers needs improvement badly -
would result in no poses being received for up to 10 seconds in some
cases

j. Contains hard-coded paths, non-portable
18.Propeller tool is awful

a. Constantly crashes while loading code and the only way to fix is to
reboot the computer (and it tries to disable the “failed” com port -
likely due to the computer not being properly grounded)

b. Even after the program has been closed it is still running in the
background and using 50% of the CPU, resulting in more tracker lag
and terrible results

c. IDE is awful, ie. undo / redo functionality does not work as expected
and typically results in permanent deletion of code

d. Working with multiple files open and split across the screen is
annoying

e. Cannot handle files edited in other IDE’s (ie. Notepad / Notepad
++ - results in corruption of line indentations and code not working
properly)

f. Poor documentation of SPIN code (ie. absolutely no documentation on
cnt variable)

19.Planner code needs to be fixed up
a. Multiple errors in original version of code - doesn’t even compile
b. Cryptic error messages at best
c. Doesn’t support packages
d. Function to obtain robot poses is ambiguous and needs to be improved
e. Code for obtaining all robot poses is unnecessarily complicated, needs

improvement
f. Integer (long) packing / unpacking needs to be fixed (high byte issue)

so data wont get corrupted
g. Needs code cleanup in general, lots of relic code
h. Documentation would be nice
i. Trace files are cryptic to read, could really use a better file structure

that is more readable (as opposed to CSV)
20.Unable to compare floats using float math library

 “If I Could Turn Back Time”
Kevin - I would have much rather taken this course after it had been fixed up,
instead of having to deal with all of the hardware and software issues we have
run into. It has been quite a headache. In hindsight, I would have liked to have
re-written the software instead of having to deal with the issues we’ve had with
the RBC communicator and the RobotTracker so that our implementation would
actually work, although I should have never had to do that in the first place.
Instead, we were unable to finish our final project because at the end, although our
software implementation was finished and functional, literally nothing worked due
to complete hardware and software failures which our implementation relied on. We
wasted many hours trying to make it work. I would have also ensured that we were
able to start the project sooner - a week and a half was not nearly enough time
to complete the project, irrelevant of how complex our implementation was to be.
Furthermore if I had known that the demo was only worth 4 marks, I would have
not pulled 2 all-nighters in a row trying to get things to work, I would have instead
taken my time to ensure things were done right instead of spending two days just
trying to catch up on sleep and ultimately getting less work done overall. In the
end, I was quite happy with how our implementation turned out despite the fact
that the software and hardware it relied on didn’t function as expected.

“Robot Hardware Problems”
Kevin

1. Different cogs have a chance of arbitrarily choking out other cogs if they
have no waitcnt delay during execution, unintuitive to figure out

2. Issues using bluetooth with cogs, very annoying
3. Robot camera colour reading does not work very well
4. Robot camera usually tracks floor, desk and walls as being blocks
5. Robot has a tendency to rock back and forth violently when using code to

find blocks (not sure as to why, but not code’s fault as other students also
had this problem)

6. Beeper does not run on own cog and is a blocking call, resulting in any other
code being interrupted (ie. Collision avoidance not working properly due to
beeper debugging)

7. Robot 3 servos actually did not work properly all
8. Bluetooth occasionally seems to get overflowed (even though it is only

receiving 2 bytes per second) and will become occasionally unresponsive for
up to 2 minutes, then simply resume)

9. Some robots did not properly display low batteries and would die on startup
(resulting in much confusion)

10.Unsure of how cnt actually works, no documentation, rollovers / overflows
would result in robot becoming unresponsive

11.Broken dip switches and pins for USB connection on robots were not very
helpful

12.Constantly need to re-calibrate robots because servo values change
13.Tracker tags constantly come loose, no tools to fix them
14.Any incoming or outgoing robot communication data was regularly corrupted

(due to the high byte issue or bluetooth noise / scrambling with cogs)
15.Block sensor would usually not go off since block was not always directly in

front of the block sensor
16.DIRRS and Sonar readings were very different from each other

“Fun / Cool Stuff”

